

NOVA
University of Newcastle Research Online

nova.newcastle.edu.au

Bakhshi, Ali; Noman, Nasimul; Chen, Zhiyong; Zamani, Mohsen & Chalup, Stephan. “Fast
automatic optimisation of CNN architectures for image classification using genetic
algorithm” Proceedings of the 2019 IEEE Congress on Evolutionary Computation
(Wellington, NZ 10 June – 13 June, 2019).

Available from: http://dx.doi.org/10.1109/CEC.2019.8790197

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Accessed from: http://hdl.handle.net/1959.13/1406891

http://dx.doi.org/10.1109/CEC.2019.8790197
http://hdl.handle.net/1959.13/1406891

Fast Automatic Optimisation of CNN Architectures
for Image Classification Using Genetic Algorithm

Ali Bakhshi
School of Elect Engg & Computing

The University of Newcastle
Newcastle, Australia

ali.bakhshi@uon.edu.au

Nasimul Noman
School of Elect Engg & Computing

The University of Newcastle
Newcastle, Australia

nasimul.noman@newcastle.edu.au

Zhiyong Chen
School of Elect Engg & Computing

The University of Newcastle
Newcastle, Australia

zhiyong.chen@newcastle.edu.au

Mohsen Zamani
School of Elect Engg & Computing

The University of Newcastle
Newcastle, Australia

mohsen.zamani@newcastle.edu.au

Stephan Chalup
School of Elect Engg & Computing

The University of Newcastle
Newcastle, Australia

stephan.chalup@newcastle.edu.au

Abstract—Convolutional Neural Networks (CNNs) are cur-
rently the most prominent deep neural network models and
have been used with great success for image classification and
other applications. The performance of CNNs depends on their
architecture and hyperparameter settings. Early CNN models
like LeNet and AlexNet were manually designed by experienced
researchers. The empirical design and optimisation of a new
CNN architecture require a lot of expertise and can be very
time-consuming. In this paper, we propose a genetic algorithm
that can, for a given image processing task, efficiently explore
a defined space of potentially suitable CNN architectures and
simultaneously optimise their hyperparameters. We named this
fast automatic optimisation model fast-CNN and employed it
to find competitive CNN architectures for image classification
on CIFAR10. In a series of comparative simulation experiments
we could demonstrate that the network designed by fast-CNN
achieved nearly as good accuracy as some of the other best net-
work models available but fast-CNN took significantly less time
to evolve. The trained fast-CNN network model also generalised
well to CIFAR100.

Index Terms—Convolutional neural network, Genetic algo-
rithm, Image classification, Deep learning

I. INTRODUCTION

The performance of a neural network is highly dependent
on its architecture and hyperparameter settings. Traditionally,
neural networks have been designed manually by researchers
with a lot of experience in this area. Since the architecture of
a well-performing neural network can depend on the problem
characteristics, the automatic identification of suitable network
architectures has been investigated by many researchers over
the past decades. Evolutionary algorithms, a class of generic
population-based metaheuristic optimisation algorithms, have
proven useful in identifying suitable network models [1]. For
this purpose, different evolutionary algorithms such as genetic
algorithm (GA) and particle swarm optimisation (PSO) have
been used by researchers in different ways. Finding efficient

Ali Bakhshi was supported by UNIPRS scholarship from University of
Newcastle, Australia.

ways to combine neural networks and genetic algorithms has
become an attractive research area that has been active for
more than twenty years. There is a very good survey in the
literature on two basic combination techniques: supportive
combinations and collaborative combinations [2]. Supportive
combinations use genetic algorithms to assist the design
of neural networks. This can be achieved by evolving the
parameters and learning rules of neural networks. On the
other hand, collaborative combinations aim to determine the
neural network weights or the topology or both using genetic
algorithms.

With the advent of deep neural architectures and their
establishment as powerful machine learning methods, the
interest in evolving and training them using evolutionary
algorithms has increased. Due to the success of gradient-
based algorithms in training the deep neural networks, and
because it is very challenging and time-consuming to optimise
the topology and weights of neural networks simultaneously,
research on the latter topic was very limited. Although there
are new promising efforts on training deep neural networks
using genetic algorithms for reinforcement learning tasks [3],
most of the efforts concentrated on evolving deep architectures
using evolutionary algorithms for classification and object
detection.

Convolutional Neural Networks (CNNs) are among the
most important concepts in deep learning and demonstrated
remarkable superiority in many different real-world applica-
tions. State-of-the-art CNN architectures, such as AlexNet [4],
VGGNet [5], and ResNet [6] were designed by experienced
neural network researchers. The requirement of extensive
domain knowledge and expertise in neural network design
often makes it difficult for inexperienced researchers and
application engineers to design successful CNN architectures
for a challenging applications or data.

Consequently, there has been an increasing recent efforts
to evolve deep neural architectures and their hyperparameters.

For example, David et al. [7] introduced a GA-assisted method
for improving the performance of a deep autoencoder on
the MNIST dataset. They considered one set of autoencoder
weights as one chromosome in the GA population. They
used the inverse of the root mean squared error (RMSE) as
the fitness score. After sorting all chromosomes based on
their fitness score, they updated the weights of high-ranking
chromosomes using backpropagation and replaced the low-
ranking chromosomes in the population by the offspring of
high-ranking chromosomes. In this work, the fitness score
was only used for removing the low-ranked chromosomes
from the population. Selection was performed uniformly and
applied to the remaining chromosomes with equal probability.
When compared with the traditional backpropagation, the GA-
assisted method, consistently exhibited better performance in
terms of reconstruction error and network sparsity.

Another study, conducted by Suganuma et al. [8], proposed
to create the CNN structure and its connectivity by using
Cartesian Genetic Programming (CGP). In order to reduce the
search space, the convolutional blocks, tensor concatenation
and other high-level functional modules were adopted as the
node functions of CGP. After training the network using the
training data in an ordinary way, they considered the accuracy
on the validation dataset as fitness score. They evaluated the
performance of the evolved CNN models on the CIFAR-
10 dataset and obtained error rates of 6.34% and 6.05%
for CGP-CNN(ConvSet) and CGP-CNN(ResSet), respectively.
Loshchilov and Hutter [9] used Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) for optimising the hyperparam-
eters of deep neural networks (DNNs). They compared the
performance of CMA-ES and other state-of-the-art algorithms
for tuning the hyperparameters of a CNN on the MNIST
dataset. In another work, Sun et al. [10] used a GA for
automatically designing CNN architectures for image classifi-
cation. They borrowed the concept of skip connections used in
ResNet [6] for creating deeper networks. Their automatically
created architectures are the combination of skip layers and
pooling layers. The performance of their model was evaluated
on well-known benchmarks such as CIFAR10 and CIFAR100.
Sun et al. [11] introduced a method for automatically evolving
CNN architecture based on ResNet and DenseNet blocks [12].
They used the combination of three different units; ResNet
block units, DenseNet block units, and pooling layer units for
generating the CNN architecture. In their encoding strategy,
each ResNet or DenseNet unit contained multiple ResNet
blocks and DenseNet blocks that helped to increase the
depth of network and increased the speed of heuristic search
by changing the depth of the network. They compared the
performance of their model with 18 state-of-the-art algorithms
on the CIFAR10 and CIFAR100 benchmarks.

In the present paper we evolved CNN architectures and
tuned the CNN hyperparameters using a genetic algorithm
for image classification on the CIFAR10 dataset. There are
many hyperparameters that affect the network design and
performance. These include learning rate, weight decay factor,
and the number of layers determining the network depth. Our

proposed fast-CNN method can tune these hyperparameters
automatically and quickly. The performance of the resulting
CNN models was evaluated on CIFAR10 and also on the
CIFAR100 dataset. The rest of the paper is organized as
follows: Section II presents a brief review of CNN. Section
III describes the proposed algorithm. Then, the experimental
setup and experimental results are explained in section IV and
V, respectively. Finally, section VI concludes the paper.

II. A BRIEF REVIEW ON CNNS

Convolutional neural networks (CNNs), a class of deep
neural network architectures [13], are mostly applied to two-
dimensional data such as images and videos. CNNs were
inspired by the organization of the animal visual cortex [14].
CNNs can automatically learn hand-engineered filters as they
were used in traditional computer vision algorithms. This
independence from prior knowledge and human intervention
in feature design is the main advantage of CNNs. Sparse
interaction, equivariant representation, and parameter sharing
are three factors that play an important role in the learning
process of a CNN [15]. In traditional artificial neural networks
(NNs), the relationship between input and output components
was derived from matrix multiplication. But in CNNs, by
using sparse interaction and creating kernels smaller than the
inputs and applying that to the whole image, this computa-
tional burden was reduced considerably. Because of parameter
sharing, the network only needs to learn one set of parameters
at each location which improves the performance of CNNs
over traditional NNs. Moreover, parameter sharing results in a
deceptive property called equivariance in which by changing
input, the output changes in the same way [16]. In fact, a CNN
is a multi-layer neural network that basically consists of two
types of layers—convolutional layers and pooling layers. The
convolutional layers are the core building block of a convolu-
tional network. In order to produce the feature maps, the input
is convolved with trainable filters of a specific size called the
receptive field. The pooling layers that are located between the
convolutional layers progressively reduce the spatial size of
the layers and thereby decrease the computational volume and
the number of parameters. The pooling layers down-sample
each depth slice of the input independently, according to the
defined filter size. The commonly used pooling layer between
a sequence of the convolutional layer has a filter size of 2× 2
with a stride of 2 [17]. CNN architectures also includes other
types of layers such as fully connected layer, normalisation
layer etc. Therefore, there are many parameters in a CNN
structure such as the number of layers, number of feature
maps, receptive field or filter size, and stride size that can
be evolved by a genetic algorithm based on the nature of the
problem and the available data.

III. THE PROPOSED GENETIC ALGORITHM

A. Overview

In this work, we evolve the best CNN model for the task
by searching for the optimal combination of hyperparameters
for the network. This section presents the proposed genetic

algorithm, called fast-CNN, for evolving the optimal CNN
model for the image classification task on CIFAR10 dataset.
The flowchart of proposed algorithm is shown in Figure 1.

Initialise Population

Evaluate Fitness

Elite Selection

Random Selection

Breed Offspring

Evaluate Offspring

Update Generation

Criterion Satisfied?

Selected Hyperparameters

Yes

No

Fig. 1: The flowchart of the genetic algorithm for evolving
CNN model

As shown in Fig. 1, the initial population is created by
randomly selecting different genes of each individual from the
search space. Each individual encodes a CNN model with a
specific architecture and hyperparameters in its chromosome.
The CNN model is trained independently with the training part
of CIFAR10 dataset and the average classification accuracy
of the network in the validation phase is considered as the
fitness score of the individual. After calculating the fitness
score of each network, the population of individuals is sorted
in descending order of their fitness scores. Then the next
generation is created by a sequence of genetic operations such

as elite selection, random selection, and breeding of the new
members. The process of generation alteration continues until
the termination criterion is satisfied. The fast-CNN framework
for evolving CNN models by GA is presented in Algorithm
1.

Algorithm 1: Fast-CNN framework for evolving CNN
models
Input: Population size (Np), Maximum number of

generation (Gmax), the RGB images of training
dataset

Output: The best CNN model with its architecture and
selected hyperparameters

1 Initialize the population with random combination of
hyperparameters

2 Train the CNN model represented by each individual in
the population and calculate its fitness score

3 NG ← 0
4 while NG < Gmax do
5 Sort individuals according to their fitness scores
6 Select the elite and random individuals from the

sorted list as part of the new generation
7 Generate offspring by GA operators from selected

parents and add to the new generation
8 Evaluate offspring
9 NG ← NG + 1

10 end
11 Return the best CNN architecture along with other

hyperparameters

B. Population initialization

The algorithm starts with an initial population of individuals
created by the combination of hyperparameters randomly
chosen from the search space. The hyperparameters that our
algorithm optimises for finding the best CNN model are the
number of network layers, number of feature maps, learning
rate, weight decay factor, and momentum. These hyperparame-
ters are encoded in each individual’s chromosome. An example
of a chromosome with selected values for each hyperparameter
is presented in Fig. 2.

Fig. 2: Example of a chromosome representing different
hyperparameters of a CNN model.

In Fig. 2, L.R, W.D, M, N.L, and N.F denote the learning
rate, weight decay factor, momentum, number of layers, and
number of feature maps, respectively. Each of these variables
can take different values and our proposed algorithm searches
for the optimal combination of these values from a selected set
or range of values shown in Table I. The set/range of possible
values for each hyperparameters in Table I were selected

according to the past experiences on images classification
using neural networks. After random selection of these hyper-
parameters, the CNN architecture will be created, according to
some rules (described below), based on the number of layers
(N.L) and the number of feature maps (N.F).

The CNN architecture is created by an alternative combina-
tion of the convolutional and pooling layers that are followed
by a linear fully connected layer on the top. Moreover, the
number, type, and ordering of layers and size of feature maps
in each layer are selected randomly for each individual in
the initial population. For example, as shown in Fig. 2, for
N.L=15 and N.F=4, a 15 layer network will be created by a
random combination of convolution and Max-pooling layers
that will be followed by an average pooling layer and a linear
fully connected layer on top. The rules for creating CNN
architecture are listed below:

• The minimum and maximum number of consecutive
convolutional layers is 2 and 4, respectively.

• Two pooling layers never occur directly in sequence.
• We keep adding a sequence of convolutional layers and

pooling layer until we reach the number of layers (N.L)
• A subsequence of size N.F is selected from the sequence
{32, 64, 128, 256, 512}. The elements of the selected sub-
sequence are randomly used as the feature map value of
convolutional block.

• If the number of feature maps (N.F) were less than the
number of different convolutional blocks in the generated
network, then one/more of the selected feature maps will
be repeated randomly.

Besides, for each convolutional layer the same kernel size
and stride size is used. Also, each convolutional layer is
followed by batch normalization [18] and rectifier activation
function [19]. Algorithm 2 shows the summary of population
initialisation.

TABLE I: The range/set of values for different hyperparame-
ters to be searched by GA

Hyperparameter Values
Learning Rate (L.R) 0.1, 0.01, 0.001, 0.0001
Weight Decay (W.D) 0.1, 0.01, 0.001, 0.0001, 0.00001

Momentum (M) 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9
No. of Layers (N.L) 10 – 25

No. of Feature maps (N.F) 3 – 5

C. Fitness Evaluation

In this work, the average classification accuracy of the CNN-
model is used as the fitness score of the individual. From each
chromosome, the CNN model is constructed and stored in the
individual. The 90% split of the training dataset is used for
training the network and the 10% split is used for validation.
The constructed network is trained by the stochastic gradient
descent (SGD) algorithm [20] for a fixed number of epoch
(Nepoch = 50), and then the average classification accuracy
in the validation phase is considered as the fitness score. For
training each network, the cross-entropy loss is considered as

Algorithm 2: Generating initial population
Input: The population size Np

Output: The Initialized population P0

Data: The range/set of values for each hyperparameter
are stored in L

1 P0 ← ∅
2 while |P0| < Np do
3 Randomly select learning rate (Lr) from L[L.R]
4 Randomly select weight decay factor (wd) from

L[W.D]
5 Randomly select momentum (M) from L[M]
6 Randomly select number of layers (Nl) from L[N.L]
7 Randomly select number of feature maps (Nf) from

L[N.F]
8 Create the network (net) with the selected

hyperparameters according to the rules described in
Section III-B

9 P0 ← P0 ∪ net

the loss function and the learning rate is reduced by a factor
of 10 in every 20 epoch. Algorithm 3 illustrates the details of
fitness evaluation.

Algorithm 3: Fitness evaluation of an individual
Input: The individual (selected network), training data

(Dtrain), validation data (Dvalid), the number of
training epoch (Nepoch)

Output: The fitness score of the individual
1 Create the CNN architecture (net) with the given

hyperparameters
2 vbest ← 0
3 step← 0
4 while step < Nepoch do
5 Train the network net on Dtrain

6 Calculate the classification accuracy (v) on Dvalid

7 if v > vbest then
8 vbest ← v
9 end

10 step← step+ 1
11 end
12 Set vbest as the fitness score of the individual
13 Return net

D. Creating New Generation

After evaluating the fitness of every individual in the current
generation, the individuals of the current population are sorted
in descending order of their fitness scores. Then top rf%
individuals from the current population are selected as elites
and added to the next generation. From the rest of the
individuals in the current generation, we randomly select some
individuals with probability rs and add to the next generation.
The randomly selected poorly performing individuals can

help to maintain population diversity and prevent premature
convergence [21], [22]. This set of elite and randomly selected
individuals form the parent pool for generating offspring for
the rest of the next generation.

From the parent pool we randomly select two different
individuals as parents who participate in the uniform crossover
operation for creating two offspring. Since the children’s genes
are selected randomly from each parents, there are different
possible combinations of parents’ genes for each child. The
offspring undergo mutation operation with a predefined mu-
tation probability mc. In the mutation operation, one of the
network hyperparameters is randomly chosen and its value
is modified randomly from the set of possible values for the
chosen hyperparameter. This process of creating offspring is
repeated until the total number of parents (in parent pool) and
the newly created offspring reaches the size of the population.
Then the parent pool and the children pool forms the new
generation of GA replacing the current one. This process of
creating new generation from the current one is repeated for
a pre-defined number of generations (NG) for finding the best
network architecture and hyperparameters. Algorithm 4 shows
how a new generation is created from the current generation.

IV. EXPRIMENTAL SETUP

A. Datasets

In this paper, we used CIFAR10 and CIFAR100 datasets
[23] as the benchmark. These datasets are widely used in
image classification task for evaluating the performance of
various deep neural network algorithms and many researcher
reported their algorithms’ performance on these datasets.

CIFAR10 dataset contains 60000 color images that are
divided into 50000 and 10000 images for training and testing,
respectively. This dataset, commonly used for image classifi-
cation problems, consists of 10 classes with 6000 images per
class, and each RGB images have the dimension of 32×32.
The CIFAR100 dataset is similar to CIFAR10, except it has
100 classes that are grouped into 20 superclasses. There are
500 training images and 100 testing images per class in this
dataset.

B. Experimental Environment

In this work, we used Pytorch framework (Version 0.4.0)
of Python programming language (Version 3.7) in all exper-
iments. We ran our experiments using the high-performance
computing (HPC) services of the University of Newcastle with
two GPUs for evolving various CNN architectures and training
those during the evolutionary process and after that.

C. Parameter Selection

As mentioned before, the main objective of this paper is
to develop a genetic algorithm that can automatically design
a deep architecture with optimal number of CNN layers, as
well as other hyperparameters such as the learning rate, weight
decay etc. Our GA works with a number of parameters which
were set based on our experience with GA and using some
preliminary studies on the problem under consideration. In our

Algorithm 4: Creating the new generation of individuals
Input: The current population of individuals with fitness

score (Po), percentage of population retained as
elite (rf), probability of retaining an individual
from the non-elite part of the population (rs), the
probability of mutation (mc), population size (Np)

Output: The new population (Pnew)
1 Sort all individuals in current population (Po) in

descending order of their fitness scores
2 Add top rf% individuals from Po to the new population

Pnew

3 Select individuals from the bottom (1− rf)% of Po with
probability rs and add to Pnew

4 Pparents ← Pnew

5 while size(Pnew) < Np do
6 parent1 ← Randomly select an individual from

Pparents

7 parent2 ← Randomly select an individual from
Pparents

8 if parent 1 6= parent 2 then
9 Create two children Child[1] and Child[2] from

parent1 and parent2 using uniform crossover
operation

10 for each offspring in Child do
11 r ← Randomly generate a number from (0,1)
12 if mc > r then
13 Randomly replace a gene in offspring

with a randomly selected value
14 end
15 end
16 Pnew ← Pnew ∪ Child
17 end
18 end
19 Return Pnew

GA the parameters were set as follows: maximum number of
generation Gmax = 20, the percentage of population retained
as elite rf = 0.4, the probability of retaining an individual
from the non-elite part of the population rs = 0.1 and the
probability of mutation mc = 0.2.

It should be noted that we used our GA for evolving some
of the CNN hyperparameters such as learning rate, weight
decay, momentum etc. whereas other hyperparameters like
dropout rate, activation function, and optimiser were kept
constant. In fact, initially we tried to evolve all of these
hyperparameters but based on our preliminary results, some of
these hyperparameters were kept constants for the rest of our
experiments. In all experiments we used dropout rate p = 0.5,
the ReLU activation function, and the SGD optimiser. The
filter size for convolution layers and stride size for pooling
layers were also fixed to 3 and 2, respectively. Additionally,
to reduce the computational burden, during the process of
evolution by GA, each network is trained with a lower number

of the epoch (Nepoch = 50). After finding the best network
hyperparameters, the selected network is trained with a higher
number of the epoch (350 epoch) for improving the average
classification accuracy of each network. In addition, to increase
the possible combination of layers with various feature maps,
the available numbers of feature maps are set to 32, 64, 128,
256, and 512.

V. EXPERIMENTAL RESULTS

In this work we proposed fast-CNN, a conventional GA,
for evolving deep CNN architecture as well as finding the
hyperparameters of the network. The proposed deep-evolve
model is evaluated by applying it for searching the optimal
setting of these hyperparameters to increase the image clas-
sification accuracy on CIFAR10 dataset. We also evaluated
the performance of the evolved CNN model by testing it on
CIFAR100 dataset with the same hyperparameter setting.

TABLE II: Hyperparameters of the top five CNN models
evolved by fast-CNN

Hyperparameters CIFAR10 CIFAR100
Learning Weight Decay Momentum Accuracy Accuracy

Rate Factor
0.01 0.01 0.65 94.70 75.63
0.1 0.001 0.55 94.24 74.03
0.1 0.001 0.8 93.80 74.81
0.01 0.001 0.8 93.56 72.12
0.1 0.01 0.7 92.27 74.45

At first, we compared the top 5 individuals in the final
population of fast-CNN in Table II. All of these five indi-
viduals have the same CNN architecture shown in Fig. 3.
We can see that the architecture has an alternation between
convolution blocks and pooling layers followed by a fully
connected layer. Moreover, each convolution layer is followed
by a two-dimensional batch-normalization layer and a rectified
linear unit (ReLU) function which are not shown in Fig. 3
for simplicity. The top five combinations of hyperparameters
for the CNN-model of Fig. 3 lie in close range as shown
in Table II. Their performances on CIFAR10 dataset are also
very close. The performance of the top CNN-model is best in
both CIFAR10 and CIFAR100 datasets. Performance of other
models more or less corresponds in both datasets.

In order to establish the competitiveness of the evolved
CNN-model by the proposed fast-CNN algorithm, it is com-
pared with the other state-of-the-art CNN-architectures - cre-
ated by manually, semi-automatic, and automatically. Table III
summarizes the results of this comparison on the CIFAR10 and
CIFAR100 datasets.

Other than the classification accuracy, Table III compares
the CNN-models in terms of model design technique
(manual assistance, semi-automatic, and automatic) and the
required computational effort in automatic construction of
those models. For the CNN-models designed automatically,
Table III reports the required GPU days which can give
us a rough estimate about the speed of the algorithm. It
must be mentioned that some of the results reported in

Table III were reproduced by us and others (indicated in
table footnote) were copied from results reported in [10].

Input RGB Images

3× 3 Conv, 64

3× 3 Conv, 64

3× 3 Conv, 64

MaxPooling, Stride 2

3× 3 Conv, 128

3× 3 Conv, 128

MaxPooling, Stride 2

3× 3 Conv, 256

3× 3 Conv, 256

3× 3 Conv, 256

MaxPooling, Stride 2

3× 3 Conv, 512

3× 3 Conv, 512

3× 3 Conv, 512

MaxPooling, Stride 2

3× 3 Conv, 512

3× 3 Conv, 512

3× 3 Conv, 512

MaxPooling, Stride 2

AvgPooling, Stride 1

Fully Connected

Fig. 3: Architecture of top CNN model(s) evolved by fast-
CNN

Since the GPU days are not available for the hand-designed
algorithms, we can not compare all algorithms with similar
criteria. Hence, we compare the fast-CNN model with hand-
designed models in terms of accuracy only, and with the
automatically designed models in terms of both accuracy and

TABLE III: The comparisons between the fast-CNN model
and the state-of-the-art CNN algorithms in terms of the clas-
sification accuracy (%)

Algorithm Accuracy Accuracy GPU Parameter
Name CIFAR10 CIFAR100 Days Setting

VGG16 93.05 74.94 - Manually
VGG19 92.59 74.04 - Manually

ResNet101 94.08 75.39 - Manually
DenseNet 94.52 76.61 - Manually
Maxouta 90.70 61.40 - Manually

Genetic CNNa 92.90 70.97 17 Semi-Auto
Hierarchical Evol.a 96.37 - 300 Semi-Auto

Block-QNN-Sa 95.62 79.35 90 Semi-Auto
Large-scale Evol.a 94.60 77 2750 Automatic

CGP-CNNa 94.02 - 27 Automatic
NASa 93.99 - 22400 Automatic

Meta-QNNa 93.08 72.86 100 Automatic
CNN-GAa 95.22 77.97 35 Automatic
fast-CNN 94.70 75.63 14 Automatic

aThe values of this algorithm reported in [10]

the required GPU days by the algorithm. As can be seen from
the Table III, the model evolved by fast-CNN achieved better
accuracy than all manually designed models in both CIFAR10
and CIFAR100 datasets (except DenseNet performed better
in CIFAR100). Specifically, in comparison with the manu-
ally designed algorithms the classification accuracy of fast-
CNN model on CIFAR10 dataset improved by 1.65%, 2.11%,
0.62%, 0.18%, and 4.00% on VGG16, VGG19, ResNet101,
DenseNet, and Maxout, respectively.

Compared to the semi-automatically designed models, the
fast-CNN model exhibits very competitive performance in
terms of classification accuracy, but requires lower GPU days.
For example, in comparison with the CNN model designed
by the semi-automatic algorithms ‘Genetic CNN’ the classifi-
cation accuracy of the fast-CNN model is 1.80% higher with
almost similar GPU days. Although the classification accuracy
of fast-CNN model is 1.67% and 0.92% lower than ‘Hierar-
chical Evolution’, and ‘Block-QNN-S’ respectively, it takes
only around one-twentieth of the GPU days of ‘Hierarchical
Evolution’ and one-sixth of the GPU days of ‘Block-QNN-S’.

When compared with the automatically designed models, it
is evident from the Table III that the classification accuracy
of fast-CNN model is 0.10% and 0.71% better than ‘Large-
scale Evolution’ and ‘NAS’ models respectively but fast-CNN
required much lower GPU days than those algorithms. Also,
compared with ‘CGP-CNN’ and ‘Meta-QNN’, the classifica-
tion accuracy of fast-CNN model improved by 0.68% and
1.62% respectively, with half of the GPU days required for
‘CGP-CNN’ and one-seventh of the GPU days required for
‘Meta-QNN’. Finally, the classification accuracy of ‘CNN-GA’
model is 0.52% better than the fast-CNN model but the GPU
days of this algorithm is around twice larger than fast-CNN.

In order to further assess the quality of the fast-CNN model,
we used the transfer learning to evaluate the performance of
the the CNN architecture evolved on CIFAR10 dataset with
the same hyperparameters for CIFAR100 dataset. Therefore,

considering the results achieved on CIFAR100 dataset, the
fast-CNN model achieves 0.69%, 1.59%, 0.24%, and 14.23%
improvement over VGG16, VGG19, ResNet101 and Maxout,
respectively. DenseNet peformed 0.98% better than fast-CNN
in terms of accuracy. Moreover, comparing the classification
accuracy of the models by the semi-automatic algorithms,
the fast-CNN model shows 4.66% higher and 3.72% lower
accuracy rate than ‘Genetic CNN’ and ‘Block-QNN-S’, re-
spectively. In addition, the classification accuracy of fast-CNN
model is 2.34% and 1.37% lower than ‘CNN-GA’ model and
‘Large-scale Evolution’ model, respectively, but 2.77% higher
than the ‘Meta-QNN’, model.

In summary, fast-CNN outperforms the state-of-the-art algo-
rithms in terms of either classification accuracy or GPU days,
or both. Although some of the semi-automatic algorithms show
better classification accuracy, they need manual intervention
and much longer GPU days. Moreover, despite the classifica-
tion accuracy of some automatically designed model is higher
than the fast-CNN model, the later is at least two times faster
than all of them.

VI. CONCLUSION

In this paper, we present a deep evolutionary approach for
automatically discovering the best architecture for a CNN
model as well as finding the best combination of hyperpa-
rameters for the network. We used a conventional genetic
algorithm, called fast-CNN, to find the best combination of
hyperparameters for CNN such as the number of layers,
number of feature maps, learning rate, weight decay factor, and
momentum. The CNN model was evolved on CIFAR10 dataset
but the performance of the network was evaluated on both
CIFAR10 and CIFAR100 datasets. The performance of the
evolved fast-CNN model was compared with 13 state-of-the-
art algorithms in terms of classification accuracy, GPU days,
and parameter setting method. Among these 13 algorithms,
five were manually designed, three used a semi-automatic
design, and the remaining were automatically designed. The
CNN model designed by the proposed GA outperformed all
manually designed models in terms of classification accuracy.
Although the classification accuracy of the fast-CNN model
was slightly lower than some semi-automatic and automati-
cally designed models, in terms of GPU days it was the best
compared to all other methods.

ACKNOWLEDGMENT

This work was supported by a strategic pilot grant awarded
by the School of Electrical Engineering and Computing at The
University of Newcastle, Australia.

REFERENCES

[1] P. A. Vikhar, “Evolutionary algorithms: A critical review and its future
prospects,” in International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC),
2016, pp. 261–265, IEEE, 2016.

[2] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in
International Workshop on Combinations of Genetic Algorithms and
Neural Networks, 1992., COGANN-92., pp. 1–37, IEEE, 1992.

[3] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep Neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
arXiv preprint arXiv:1712.06567, 2017.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing systems, pp. 1097–1105, 2012.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[7] O. E. David and I. Greental, “Genetic algorithms for evolving deep
neural networks,” in Proceedings of the Companion Publication of the
2014 Annual Conference on Genetic and Evolutionary Computation,
pp. 1451–1452, ACM, 2014.

[8] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 497–504, ACM, 2017.

[9] I. Loshchilov and F. Hutter, “CMA-ES for hyperparameter optimization
of deep neural networks,” arXiv preprint arXiv:1604.07269, 2016.

[10] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Automatically designing
CNN architectures using genetic algorithm for image classification,”
arXiv preprint arXiv:1808.03818, 2018.

[11] Y. Sun, B. Xue, and M. Zhang, “Automatically evolving CNN architec-
tures based on blocks,” arXiv preprint arXiv:1810.11875, 2018.

[12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2261–2269, IEEE,
2017.

[13] I. Arel, D. C. Rose, T. P. Karnowski, et al., “Deep machine learning-
a new frontier in artificial intelligence research,” IEEE Computational
Intelligence Magazine, vol. 5, no. 4, pp. 13–18, 2010.

[14] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent
facial expression recognition with robust face detection using a convolu-
tional neural network,” Neural Networks, vol. 16, no. 5-6, pp. 555–559,
2003.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
vol. 1. MIT press Cambridge, 2016.

[16] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[17] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations
in convolutional architectures for object recognition,” in Artificial Neural
Networks–ICANN 2010, pp. 92–101, Springer, 2010.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[19] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pp. 315–323, 2011.

[20] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010, pp. 177–186, Springer,
2010.

[21] C. M. Anderson-Cook, “Practical genetic algorithms,” Journal of the
American Statistical Association, vol. 100, no. 471, pp. 1099–1099,
2005.

[22] S. Malik and S. Wadhwa, “Preventing premature convergence in genetic
algorithm using dgca and elitist technique,” International Journal of
Advanced Research in Computer Science and Software Engineering,
vol. 4, no. 6, 2014.

[23] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

